Acknowledgement
Thanks for the input Tim. I’m not quite at the stage where I will do actual tramming, but I will use your input when I get down to the final tramming and leveling. One quick question: Steelers or Eagles?
Progress
This is going to be somewhat difficult to describe, even using photos; but I will give it my best shot.
I completely dis-assembled the entire gantry, then proceeded to re-assemble it step by step. This time, instead of tightening the bolts as I went along, I left everything loose and only tightened everything at the end when it was square and level. Also, I alternated the tightening sequence so that one side or one sub-assembly would be torque balanced as I proceeded. Another significant change in the re-assembly process involved the Z-axis support rollers. I will try my best to explain.
If you go back and review posts #23 and #28 you will see that I added a 4th support roller for the Z-axis spindle support. If you look carefully, you can see that the spacer blocks for both sides are machined identical; that is they are machined with 7.12 mm openings for a 6 mm eccentric spacer. Aha! But the instructions provided say to use a 6 mm aluminum spacer on one side and a 6 mm spacer on the other.
So, I removed the 6 mm aluminum spacers and replaced them with the 6 mm eccentric spacers. Now I had some adjustment available when I wanted to tram my router. Each eccentric provides up to 1.25 mm of linear adjustment, so if I adjusted the eccentric 1 mm on the right, I could compensate 1 mm to the left and thus adjust the perpendicularity of my spindle. Jeez, I hope that makes sense to whoever is reading this!
OK folks, here is the bottom line: after re-assembling the entire gantry, and incorporating the techniques mentioned above, everything is within 0.5 degrees of perpendicularity which I expect to correct when I do the final tramming.
And now, if you don't mind, can we get back to the electrical wiring?
The inclinometer images represent the top of the Z-axis stepper motor, the X-axis gantry rail, and the base that the entire assembly rests on.